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Abstract. The paper presents a general methodology of adaptive control based on fuzzy model to
deal with unknown plants. The problem of parameter estimation is solved using a direct approach,
i.e. the controller parameters are adapted without explicitly estimating plant parameters. Thus, very
simple adaptive and control laws are obtained using Lyapunov stability criterion. The generality of
the approach is substantiated by Stone-Weierstrass theorem, which indicates that any continuous
function can be approximated by fuzzy basis function expansion. In the sense of adaptive control,
this implies the adaptive law with fuzzified adaptive control parameters. The proposed control algo-
rithm may be viewed as an extension of classical adaptive control for linear plants, but compared
to the latter it provides higher adaptation ability and consequently better performance if the plant
is nonlinear. The global stability of the control system is assured and the tracking error converges
to the residual set that depends on fuzzification properties. The main advantage of the approach is
simplicity that suits control engineers since wide range of industrial processes can be controlled by
the proposed method. In the paper, the control of heat exchanger is performed.
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1. Introduction

The nature of dynamical systems usually implies slow changes of systems para-
meters and changes of the parameters due to the different operating conditions or
operating point. In that case an adaptive controller should be designed to follow the
changes of operating conditions and adapt in certain prescribed way.

In recent years, a lot of effort has been put to neuro-fuzzy identification of com-
plex plants, which can not be easily theoretically modelled. Based on neuro-fuzzy
presentation of the plant dynamics the neuro-fuzzy adaptive control approaches
appeared in literature [16] where detailed discussion on identification and control
of dynamical systems based on neural networks is given, in [11] where the tracking
performance of model reference adaptive control using multilayer neural networks
based on Lyapunov stability approach is studied and in [23, 25] where stable
adaptive fuzzy controller for nonlinear systems is designed and explained, in [15]
an adaptive control using multiple models is developed and investigated. A di-
rect adaptive fuzzy-model-based control algorithm is presented in [1]. In this case
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the controller is based on an inverse semi-linguistic fuzzy process model which
is identified and adapted via input-matching technique using a general gradient-
descent algorithm. An adaptive fuzzy sliding-mode controller and its application to
a robot manipulator arm is presented in [2]. In [4], two methods for adaptation of
nonlinear adaptive controllers are presented and compared, namely, the data-driven
and the knowledge-based adaptation. Both approaches are compared by application
to temperature control of a heat exchanger.

In our paper a general methodology of adaptive control based on fuzzy model
to deal with plants with unknown parameters is presented. We introduce a novel
model reference fuzzy adaptive control system which is based on the fuzzy basis
function expansion. The generality of the proposed algorithm is substantiated by
Stone–Weierstrass theorem which indicates that any continuous function can be
approximated by fuzzy basis function expansion. The combination of adaptive
control theory based on models obtained by fuzzy basis function expansion results
in direct model-reference fuzzy adaptive control which provides higher adaptation
ability than basic adaptive control systems. The proposed control algorithm is the
extension of direct model-reference fuzzy adaptive control to nonlinear plants. Di-
rect fuzzy adaptive controller directly adjusts the parameter of fuzzy controller to
achieve approximate asymptotic tracking of the model-reference input. The main
advantage of the proposed approach is simplicity together with high performance,
and it has been shown that the closed-loop system using direct fuzzy adaptive con-
troller is globally stable and the tracking error converges to the residual set which
depends on fuzzification properties. The proposed approach can be implemented
on a wide range of industrial processes. In the paper the foundation of the proposed
algorithm are given and some simulation examples are shown and discussed.

The paper is organized as follows: in Section 2 the description of direct model-
reference fuzzy adaptive system is given, in Section 3 we are introducing the model
of nonlinear heat-exchanger plant which was used in our simulation study and in
Section 4 the simulation study is described. In Section 5 some main observations
are discussed.

2. Direct Model-Reference Fuzzy Adaptive Control

Model reference adaptive control systems are proven to be globally stable under
certain assumptions on the unknown process: phase minimality; no disturbance or
unmodelled dynamics; linearity; time invariance; and knowledge of the process
relative degree and the sign of so-called high-frequency gain. Unfortunately, the
assumptions given above are often violated in practice and “adaptive algorithms
as published in the literature are likely to produce unstable control systems if they
are implemented on physical systems directly as they appear in the literature” [22].
Many of the above assumptions can be circumvented on the cost of more complex
adaptive and control laws. Robustness of the adaptive systems to unmodelled dy-
namics and bounded disturbance is treated in [14, 19]. Nonlinear adaptive control
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has been widely studied in the last decade [12] but the results obtained seem not
to be easily transferred to the engineering society since they require fairly good
knowledge of mathematics and thus these approaches are avoided by practicing
engineers.

2.1. MODEL-REFERENCE ADAPTIVE CONTROL OF LTI SYSTEMS

The globally stable continuous model-reference adaptive control dynamic is given
first. The goal of the model-reference adaptive system is to design a controller
which forces the process to follow the model output, which is in the case of first
order plant given by the following equation

Gm(s) = ym(s)

w(s)
= bm

s + am
(1)

where w(t) stands for the reference signal and ym(t) for reference-model output.
To obtain perfect model following a pre-filter with gain f and the gain q in the
feedback loop should be designed. Assuming the process transfer function

Gp(s) = yp(s)

u(s)
= b

s + a
(2)

and control law given in the following equation

u = fw − qyp (3)

the closed-loop transfer function is given by

Gw(s) = f b

s + a + bq
. (4)

The parameter errors between open-loop parameters and model-reference para-
meters are given next

b̃ = f b − bm,

ã = a + bq − am.
(5)

Applying Equation (5) and subtracting the differential equations of the closed-loop
system and reference model, the error equation is obtained

ė + ame = b̃w − ãyp (6)

where e defines the error between the plant output and model reference response

e = yp − ym. (7)

Introducing a Lyapunov function

V (e, ã, b̃) = e2 + 1

γf
b̃2 + 1

γq
ã2 (8)
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which is positive definite in R3, the space (e, ã, b̃). The time derivative of V (e, ã, b̃)

along Equation (6) is given by

V̇ (e, ã, b̃) = −2ame
2 + 2

γf
b̃
˙̃
b + 2b̃we + 2

γq
ã ˙̃a − 2ãype. (9)

The condition V̇ (e, ã, b̃) � 0 leads to the adaptive control laws in Equation (10)

ḟ = −γf

b
ew,

q̇ = γq

b
eyp

(10)

where time-invariance of the plant is assumed. If the sign of the so-called high-
frequency gain b is known in advance Equation (10) can be rewritten as

ḟ = −γ ∗
f sign(b)ew,

q̇ = γ ∗
q sign(b)eyp

(11)

where γ ∗
f and γ ∗

q are arbitrary positive constants.
Global stability is obtained in small operation region where the process can be

sufficiently described by linear model. Problems arise in the case of unmodelled
dynamics and nonlinear process plants. Our main motivation was to find a simple
solution for adaptive control of nonlinear processes.

2.2. DMRFAC OF NONLINEAR SYSTEMS

The model of the plant in the proposed control scheme is given in the form of
simple fuzzy Takagi–Sugeno model. The basic idea of model reference adaptive
control is to introduce a global stability criterion into the design procedure and to
choose the adaptive control law in such a way that the requirements of the stabil-
ity criterion are fulfilled [13]. The algorithm is based on direct model reference
adaptive control obtained by Lyapunov criterion. The main idea of our approach
is fuzzification of adaptive parameters. The parameters are fuzzified corresponding
to the process input, output or state variables of the process. Direct fuzzy adaptive
controller directly adjust the parameters of fuzzy controller to achieve asymptotic
tracking of the model-reference input [17, 18]. It has been show that asymptotic
tracking convergence is possible if approximation error is square integrable. This
mean that the fuzzy basis function expansion or fuzzy modelling of the plant
dynamics should be designed in a way to achieve the modelling error, i.e. error
between the real plant dynamics and the model, which is square integrable. Even
in the case where the approximation, i.e. the modelling or approximation error is
not square integrable we have shown that it is possible to achieve the asymptotic
tracking of the model-reference signal.

The main advantage of the proposed approach is simplicity together with high
performance, and it has been proven that the closed-loop system using direct fuzzy
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adaptive controller is globally stable and the tracking error converges to the resid-
ual set which depends on fuzzification properties. The proposed approach can be
implemented on a wide range of industrial processes.

The paper is focused only on problem of nonlinearity. All other typical problems
which are common for adaptive system in general can be treated and solved as
proposed in literature [7, 8, 19].

The algorithm of Direct Model-Reference Fuzzy Adaptive Control (DMRFAC)
will be presented next.

Because of the simplicity we are assuming the first order model plant, but the
approach can be easily extend to higher order.

The proposed fuzzy adaptive control system assumes the fuzzification of for-
ward gain f and feedback gain q. The choice of fuzzification variables depends
on the process behaviour and is similar problem to that of structural identification
in case of Takagi–Sugeno (TS) model [24]. The fuzzified gains are described by
means of fuzzy numbers f and q

f T = [f1, f2, . . . , fk],
qT = [q1, q2, . . . , qk] (12)

where k stands for number of fuzzy rules.
It should be emphasized that the structure of fuzzy model could be in general

very complex but we are assuming, because of the simplicity, that the process under
investigation can be modelled by the TS fuzzy model given in Equation (13). In this
case the nonlinearity mostly depends on two variables which are the process output
yp and measured disturbance zm.

Ri : if yp is Ai and zm is Bi then ẏp = −aiyp + biu, i = 1, . . . , k. (13)

The variables in premise are those which influent mostly to the process nonlin-
earity, Ai , Bi are fuzzy membership functions where ia = 1, . . . , na and ib =
1, . . . , nb. The number of membership functions for the first and the second input
variable defines the number of rules k = na × nb. The membership functions have
to cover the whole operating area of the closed-loop system. Using this type of TS
fuzzy model and the models of higher order in consequent part of the rule, a huge
number of industrial processes can be modelled. The output of TS model is then
given by the following equation

ẏp =
∑k

i=1(β
∗
i (k)(−aiyp + biu))∑k

i=1 β
∗
i (k)

. (14)

The degree of fulfillment β∗
i (k) is obtained using a simple algebraic product which

stand for fuzzy intersection or fuzzy T-norm in general, and which replace linguis-
tic fuzzy operator and

β∗
i (k) = T

(
µAi

(yp), µBi
(zm)

) = µAi
(yp).µBi

(zm) (15)
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where µAi
(yp) and µBi

(zm) stand for degrees of fulfillment of the corresponding
membership functions. The degrees of fulfillment for the whole set of rules can be
written as

β∗ = [
β∗

1 , β
∗
2 , . . . , β

∗
k

]T
(16)

and given in normalized form as

β = β∗∑k
i=1 β

∗
i

= [β1, β2, . . . , βk]T (17)

resulting in equality

k∑
i=1

βi = 1. (18)

Due to Equations (14) and (17) the process can be modeled in fuzzy form as

ẏp = −βTayp + βTbu (19)

where a and b stand for fuzzified parameters of the process which have constant
elements

aT = [a1, a2, . . . , ak],
bT = [b1, b2, . . . , bk]. (20)

To develop DMRFAC algorithm the control law given in Equation (21) is assumed
first,

u = βTfw − βTqyp (21)

where f and q are control parameters to be obtained by adaptive law. The control
law given in Equation (21) is in general not applicable because the unknown high-
frequency gain vector b. Further development will result in an applicable control
law. Implementing the control law in the basic closed loop of the control system
the following differential equation is obtained

ẏp = −βTayp + βTf bminw − βTqbminyp + ε(β, b,f , q). (22)

Equation (22) is obtained under the following assumptions:(
βTb

)(
βTf

)
w = (

βTf
)
bminw + εf (β, b,f , q),(

βTb
)(

βTq
)
yp = (

βTq
)
bminyp + εq(β, b,f , q),

ε(β, b,f , q) = εf (β, b,f , q) + εq(β, b,f , q),
bmin = min

i
{b}.

(23)

In Stone–Weierstrass theorem [5] it is shown that the general form of TS fuzzy
model represents a universal approximator of any nonlinear dynamic system by
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fuzzy basis function expansion with an arbitrary precision. For the proposed class
of processes this means that the unmodelled term in Equation (22) fulfills the
criterion in Equation (24).

|ε(β, b,f , q)| � ε̄ (24)

The fuzzy reference model parameters am and bm can be defined as

am = [am, am, . . . , am]T,

bm = [bm, bm, . . . , bm]T (25)

and the reference model is written in the form of fuzzy model by the following
equation

ẏm = −βTamym + βTbmw. (26)

Subtracting differential equation with fuzzy parameters in Equation (26) from
Equation (22) the following error model is obtained

ė + βTame = βT(f bmin − bm)w − βT(qbmin + a − am)yp
+ ε(β, b,f , q).

(27)

The following equations are written to simplify further derivation

b̃ = f bmin − bm,

ã = qbmin + a − am.
(28)

Implementing expressions from Equation (28) to Equation (27) the simplified equa-
tion is given by

ė + βTame = βTb̃w − βTãyp + ε(β, b,f , q). (29)

Introducing the Lyapunov function

V (e, ã, b̃) = e2 +
k∑

i=1

1

γbi
b̃2
i +

k∑
i=1

1

γai
ã2
i (30)

the time derivative of the function is given by

V̇ (e, ã, b̃) = 2eė + 2
k∑

i=1

1

γbi

˙̃
bib̃i + 2

k∑
i=1

1

γai

˙̃ai ãi . (31)

By fulfilling Equation (32), V (e, ã, b̃) > 0 in Equation (31) can be made negatively
semi-definite if tracking error e exceeds boundary which is a function of unmod-
elled term ε(β, b,f , q). This means that the closed-loop system using direct fuzzy
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adaptive controller is globally stable and the tracking error converges to the residual
set which depends on fuzzification properties:

ew

k∑
i=1

βib̃i +
k∑

i=1

1

γbi

˙̃
bib̃i = 0,

eyp

k∑
i=1

βiãi +
k∑

i=1

1

γbi

˙̃aiãi = 0, i = 1, . . . , k.

(32)

Equation (32) leads to the adaptive laws which are obtained in the following equa-
tion

˙̃
bi = −γbiewβi,

˙̃ai = γaieypβi, i = 1, . . . , k.
(33)

Derivation of Equation (28) results in the following equations

˙̃
b = ḟ bmin,

˙̃a = q̇bmin

(34)

where time-invariance of the controlled system is again assumed. Assuming Equa-
tions (33) and (34) the following equations are obtained

ḟi = − γbi

bmin
ewβi,

q̇i = γai

bmin
eypβi, i = 1, . . . , k.

(35)

The fuzzified vectors f and q are defined as

f = [f1, . . . , fk]T,

q∗ = [q1, . . . , qk]T.
(36)

According to Equation (35) the fuzzified adaptive parameters fi and qi where i =
1, . . . , k are written as

fi = −γf i sign(bmin)

∫ t

0
ewβi dt + fi(0), γf i > 0,

qi = γqi sign(bmin)

∫ t

0
eypβi dt + qi(0), γqi > 0,

(37)

where

γf i = γbi

|bmin| ,

γqi = γai

|bmin| .
(38)
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To obtain a stable closed-loop system, the knowledge of the signum of elements
in b is necessary. This also implies that the signs of elements in b have to be equal.

2.3. STABILITY ISSUES OF DMRFAC

The fuzzy models are universal approximators of nonlinear processes [3]. The
quality of approximation depends on fuzzification of the process state domain. The
fuzzification means the number, type and distribution of membership functions.

It is not possible in general to find a vector �∗ that would permit zero tracking
error in each operating point since fuzzy modelling only guarantees arbitrary small
tracking errors. This means that we should always take care about the unmodelled
error. In the case of unmodelled dynamics the adaptive schemes my easily go unsta-
ble. The lack of robustness is primarily due to the adaptive law which is nonlinear
in general and therefore more susceptible to modelling error effect.

The lack of robustness of adaptive law in the presence of bounded disturbance
can be solved by new approaches and adaptive laws which assure boundedness of
all signals in the presence of plant uncertainties. These leads to new body of work
referred to as robust adaptive control.

To introduce the robustness into the adaptive control scheme we convert the pure
integral action of the adaptive law to a leaky integration and is therefore referred to
as the leakage modification.

In the case of unmodelled dynamics the dynamical normalization is used to
obtain a robust solution. The design of the normalizing signal m will guarantee
that (ηs/m) ∈ L∞ and (�f /m) ∈ L∞ where ηs stands for modelling error term.
The design of dynamical normalization signal is following

m2 = 1 + n2
s ,

n2
s = ms + �T

f �f + u2 + y2
p,

ṁs = −δ0ms + u2 + y2
p,

ms(0) = 0

(39)

where δ0 > 0 should be properly chosen [9].
The idea of leakage modification is to modify the adaptive law so that the time

derivative of Lyapunov function used to analyze the adaptive scheme becomes neg-
ative in the space of the parameter when these parameters exceed certain bounds.
This can be done by modification of adaptive law which is presented in scalar form
as

ḟi = −γf sign(bi)εwβi − γf |εm|ν0fiβi, i = 1, 2, . . . , k,

q̇i = −γq sign(bi)εypβi − γq |εm|ν0qiβi, i = 1, 2, . . . , k,
(40)

or in vector form

ḟ = −�f εwβ − �f |εm|ν0Fβ,

q̇ = �qεypβ − �q |εm|ν0Qβ
(41)
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where we are assuming that sign(bi) = sign(b) for all i = 1, . . . , k and

�f = γf sign(b)Ik×k,

�q = γq sign(b)Ik×k

(42)

and F and Q stand for diagonal matrices where fi , i = 1, . . . , k and qi , i =
1, . . . , k, are the diagonal elements.

The term |εm|ν0 in Equations (40) and (41) is called the leakage term. In the
literature various choices [7, 10] of the leakage term are known. The best results
have been obtained by the upper choice which is called ε-modification introduced
by Narendra and Annaswamy [13]. The constants in ε-modification are ν0 which
is a design constant, m is normalizing signal and ε is the normalized error between
the reference-model output ym and process output yp .

In the compact matrix form the adaptive law is written as follows

�̇ = ��f ε − ��diagβ|εm|ν0 (43)

where

� =
[

�f 0k×k

0k×k �q

]
(44)

and

�diag =
[

F

Q

]
. (45)

The stability properties of adaptive laws with the ε-modification and dynamic
normalization guarantee that

ε, εns,�, �̇ ∈ L∞,

ε, εns, �̇ ∈ S
(
ν0 + η2

s

m2

)
(46)

and if ns , �f ∈ L∞ and �f is persistently exciting and is independent of ηs , then
� converges exponentially fast to the residual set [9]

Dε = {
� ∈ Rn, |�| � c(ν0 + η̄)

}
(47)

where c � 0 and η̄ = supt (ηs/m). From Equation (46) is also clear that ε, εns, �̇
are bounded in L2e sense and belongs to the µ-small in the mean square sense.

3. The Model of Nonlinear Heat-Exchanger Plant

The simulation study was done for heat-exchanger plant control which together
with sensors and actuators limitation represents a serious problem from the point
of optimal energy consumption. The problem lies in the nonlinearity of the system



FUZZY ADAPTIVE CONTROL FOR NONLINEAR SYSTEM 341

behavior. The objective of our investigation, a real temperature plant, consists of:
a plate heat-exchanger, a reservoir with heated water, two thermocouples and a
motor driven valve. The plate heat exchanger, through which hot water from an
electrically heated reservoir is continuously circulated in the counter-current flow
to cold process fluid (cold water). The thermocouples are located in the inlet and
outlet flows of the exchanger; both flow rates can be visually monitored. Power
to the heater may be controlled by time proportioning control using the external
control loop. The flow of the heating fluid can be controlled by the proportional
motor driven valve. A schematic diagram of the plant is shown in Figure 1. The
temperature of heated water Tsp(k) is measured on the temperature sensor TC4
which is on the outlet of the secondary circuit, the temperature of cold water in the
inlet of secondary circuit Tep(k) is measured on the temperature sensor TC3 and
Tec(k) represents the temperature of hot water in the inlet of the primary circuit
which is measured on the temperature sensor TC1. The primary circuit flow Fc(k)

is measured on optical flow sensor F2 and is defined by motor driven valve and the
secondary flow Fp(k) is measured on the optical flow sensor F1.

The controlled variable of our problem is the temperature in the secondary cir-
cuit Tsp which is manipulated with the flow Fc. The heat-exchanger is just one part
of the plant, so the sensors and the actuators should also be modelled. For non-
linear systems with well-understood physical phenomena fundamental modelling
is preferable. Although the physical phenomena in the case of heat-exchanger
are well investigated, there are still some physical parameters which should be
estimated assuming a certain structure of the process dynamics. The simplified
first-principle model of heat-exchanger is described by the following differential

Figure 1. The heat-exchanger pilot plant.
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equations

τ2(Tsp)Ṫsp + Tsp = γ Tep + (1 − γ )Tec (48)

where the generalized formula for γ is given in the literature [21] and can be written
as

γ = 1 + kc(1/Fc)
m

1 + kc((1/Fc)m + (1/Fp)m)
(49)

where kc and m are unknown constants and τ2 is an unknown function of operating
point. All those parameters are unknown and should be estimated somehow.

During the operation of the heat-exchanger, some of the system variables (the
flow Fp of the secondary circuit and the temperature Tec at the inlet of the primary
circuit of the heat-exchanger) are approximately constant. Our main goal is to
control the temperature Tsp by changing the primary circuit flow Fp. Although
the process is very complex, it could be presented as a model with approximately
first order dynamics. It should be noted, however, that parasitic dynamics are also
present as a consequence of actuators, sensors, heat junctions, mass flows etc. An
extra parasitic pole was added to take into account for the contribution of the para-
sitics. That pole did not have much influence on time responses of the system, i.e.
the plant was still dominantly of the first order. Measurement noise is also present
in the plant. It was also added in the model of the plant.

4. Simulation Study of Model-Reference Fuzzy Adaptive Control

Our goal was to design control algorithm that would enable that the closed-loop
system behaves as close to a linear reference model as possible. Two different
approaches were compared: fuzzy model reference adaptive control with control
law described in Equations (21) and (37), proposed in the present paper, and clas-
sical model reference adaptive control for linear plants defined by Equations (3)
and (10). To make the latter robust to unmodelled dynamics, disturbances, and
noise, the robust adaptive law with e1-modification [13] was used.

The simulation study will be described next. The reference signal was periodic
and piece-wise constant. The first period of the signals in DMRFAC case is shown
in Figures 2, 3 and 5. In Figure 4 the trajectories of fuzzified adaptive parameters
are shown. As proposed in the paper, first order reference model was chosen. Even
if the plant has high order parasitics, it was forced to follow reference model,
described by transfer function

Gm(s) = 0.01

s + 0.01
. (50)

It is known a priori that perfect following cannot be achieved, but the results will
show that this simplification is justified.
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Figure 2. The first period of the signals in DMRFAC case.

Figure 3. The last period of the signals in DMRFAC case.
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Figure 4. The trajectories of fuzzified adaptive parameters.

Figure 5. Last period of the signals in MRAC case.
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The choice of proper adaptive gain is very important when one deals with
adaptive systems. In nonlinear case this is even more obvious, since adaptive pa-
rameters do not converge to specific values. Rather, they tend to change when the
operating point changes. Our approach reduces these oscillations since different
parameters are estimated in different fuzzy domains. Unfortunately, fuzzy model
fails to achieve perfect modelling of the plant, and the parameters still oscillate a
little. These oscillations can be even further amplified by choosing adaptive gains
too high. If, on the other hand, the adaptive gains are too low, the estimation is
too slow, and, especially in the linear MRAC case, the parameters fail to follow
rapid changes of the operating point. This problem is not so serious in the fuzzy
adaptive case, since fuzzy domains have to be chosen such that the plant parameters
do not differ to much in a domain. The following adaptive gains were used in our
experiments: γf = 10−5 and γq = 10−5. The choice of the leakage parameter
was not so critical in this case ν0 = 1 was used. The adaptive parameters were
initialized to 0 in all cases.

First, classical MRAC was tested. It turned out that the adaptive gain was to high
in the beginning and the response of the system was not acceptable. After reducing
adaptive gains, the parameters converged slower, but quite good performance was
achieved. Reducing adaptive gains further made the results worse. The optimal
results are shown in Figure 5. In the upper part of the figure, controlled variable
is shown, together with reference signal and reference model output. To see the
difference more clear, tracking error is shown in the middle part of the figure. The
manipulated variable is shown in the lower part of the figure. It can be seen that
the results are acceptable, but the system start to oscillate when reference signal
becomes large. These oscillations are also present in other operating points, they
can be seen easier from the manipulated variable.

The proposed approach was also tested under the same conditions. The original
adaptive gain was used in the beginning of the experiment. The estimated parame-
ters were quite oscillatory, but that did not affect plant responses. The first period
of the reference signal is shown in Figure 2. It can be seen, that the performance of
the control is excellent. In the classical MRAC case, the response of the plant was
very bad in the beginning. The adaptive parameters are shown in Figure 4. Huge os-
cillations can be seen in the beginning, but the parameters still quasy-settle. Then,
the adaptive gains were reduced to obtain better convergence of the parameters.
This was done twice in the experiment, and these two points can be identified as a
decrease of parameter oscillations in Figure 4. The plant response at the end of the
experiment is again shown in Figure 3. By comparing the signals in Figures 5 and 3,
it can be said that the latter are more acceptable, since almost perfect tracking is
obtained, and the unwanted oscillations in the manipulated variable are not present.
One has to realize that the actuator in this case is a pump, and oscillations on the
manipulated variable are not admissible. Note the tracking error when the reference
signal changes (Figure 3). It cannot be suppressed by any control algorithm since
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it is a consequence of the fact that the plant of the second order is forced to follow
reference model of the first order.

5. Conclusion

In this paper a novel fuzzy model-reference adaptive control system is introduced.
It is based on Lyapunov stability criterion. The adaptive parameters of the system
are fuzzified. The main goal of the proposed approach was the extension of globally
stable adaptive control to nonlinear plants. The parameters are fuzzified corre-
sponding to the process input, output or state variables of the process. The develop-
ment of the novel algorithm has been tested using simulation on different nonlinear
systems, including also unmodelled and unmeasured dynamics. The combination
of adaptive control theory based on models obtained by fuzzy basis function ex-
pansion results in fuzzy model-reference adaptive control which provides higher
adaptation ability than basic adaptive control systems. The main advantage of the
proposed approach is simplicity together with high performance. In the paper the
foundation of proposed algorithm are given and simulation example is shown and
discussed.
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